Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Small ; : e2308479, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385813

RESUMO

Microneedles (MNs) have maintained their popularity in therapeutic and diagnostic medical applications throughout the past decade. MNs are originally designed to gently puncture the stratum corneum layer of the skin and have lately evolved into intelligent devices with functions including bodily fluid extraction, biosensing, and drug administration. MNs offer limited invasiveness, ease of application, and minimal discomfort. Initially manufactured solely from metals, MNs are now available in polymer-based varieties. MNs can be used to create systems that deliver drugs and chemicals uniformly, collect bodily fluids, and are stimulus-sensitive. Although these advancements are favorable in terms of biocompatibility and production costs, they are insufficient for the therapeutic use of MNs. This is the first comprehensive review that discusses individual MN functions toward the evolution and development of smart and multifunctional MNs for a variety of novel and impactful future applications. The study examines fabrication techniques, application purposes, and experimental details of MN constructs that perform multiple functions concurrently, including sensing, drug-molecule release, sampling, and remote communication capabilities. It is highly likely that in the near future, MN-based smart devices will be a useful and important component of standard medical practice for different applications.

2.
J Appl Physiol (1985) ; 133(3): 721-731, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35861522

RESUMO

Weightlessness induces a cephalad shift of blood and cerebrospinal fluid that may increase intracranial pressure (ICP) during spaceflight, whereas lower body negative pressure (LBNP) may provide an opportunity to caudally redistribute fluids and lower ICP. To investigate the effects of spaceflight and LBNP on noninvasive indicators of ICP (nICP), we studied 13 crewmembers before and after spaceflight in seated, supine, and 15° head-down tilt postures, and at ∼45 and ∼150 days of spaceflight with and without 25 mmHg LBNP. We used four techniques to quantify nICP: cerebral and cochlear fluid pressure (CCFP), otoacoustic emissions (OAE), ultrasound measures of optic nerve sheath diameter (ONSD), and ultrasound-based internal jugular vein pressure (IJVp). On flight day 45, two nICP measures were lower than preflight supine posture [CCFP: mean difference -98.5 -nL (CI: -190.8 to -6.1 -nL), P = 0.037]; [OAE: -19.7° (CI: -10.4° to -29.1°), P < 0.001], but not significantly different from preflight seated measures. Conversely, ONSD was not different than any preflight posture, whereas IJVp was significantly greater than preflight seated measures [14.3 mmHg (CI: 10.1 to 18.5 mmHg), P < 0.001], but not significantly different than preflight supine measures. During spaceflight, acute LBNP application did not cause a significant change in nICP indicators. These data suggest that during spaceflight, nICP is not elevated above values observed in the seated posture on Earth. Invasive measures would be needed to provide absolute ICP values and more precise indications of ICP change during various phases of spaceflight.NEW & NOTEWORTHY The current study provides new evidence that intracranial pressure (ICP), as assessed with noninvasive measures, may not be elevated during long-duration spaceflight. In addition, the acute use of lower body negative pressure did not significantly reduce indicators of ICP during weightlessness.


Assuntos
Voo Espacial , Ausência de Peso , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Pressão Intracraniana/fisiologia , Voo Espacial/métodos , Simulação de Ausência de Peso
3.
JAMA Ophthalmol ; 140(8): 763-770, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35708665

RESUMO

Importance: Countermeasures that reverse the headward fluid shift experienced in weightlessness have the potential to mitigate spaceflight-associated neuro-ocular syndrome. This study investigated whether use of the countermeasure lower-body negative pressure during spaceflight was associated with changes in ocular structure. Objective: To determine whether changes to the optic nerve head and retina during spaceflight can be mitigated by brief in-flight application of 25-mm Hg lower-body negative pressure. Design, Setting, and Participants: In the National Aeronautics and Space Administration's "Fluid Shifts Study," a prospective cohort study, optical coherence tomography scans of the optic nerve head and macula were obtained from US and international crew members before flight, in-flight, and up to 180 days after return to Earth. In-flight scans were obtained both under normal weightless conditions and 10 to 20 minutes into lower-body negative pressure exposure. Preflight and postflight data were collected in the seated, supine, and head-down tilt postures. Crew members completed 6- to 12-month missions that took place on the International Space Station. Data were analyzed from 2016 to 2021. Interventions or Exposures: Spaceflight and lower-body negative pressure. Main Outcomes and Measures: Changes in minimum rim width, optic cup volume, Bruch membrane opening height, peripapillary total retinal thickness, and macular thickness. Results: Mean (SD) flight duration for the 14 crew members (mean [SD] age, 45 [6] years; 11 male crew members [79%]) was 214 (72) days. Ocular changes on flight day 150, as compared with preflight seated, included an increase in minimum rim width (33.8 µm; 95% CI, 27.9-39.7 µm; P < .001), decrease in cup volume (0.038 mm3; 95% CI, 0.030-0.046 mm3; P < .001), posterior displacement of Bruch membrane opening (-9.0 µm; 95% CI, -15.7 to -2.2 µm; P = .009), and decrease in macular thickness (fovea to 500 µm, 5.1 µm; 95% CI, 3.5-6.8 µm; P < .001). Brief exposure to lower-body negative pressure did not affect these parameters. Conclusions and Relevance: Results of this cohort study suggest that peripapillary tissue thickening, decreased cup volume, and mild central macular thinning were associated with long-duration spaceflight. Acute exposure to 25-mm Hg lower-body negative pressure did not alter optic nerve head or retinal morphology, suggesting that longer durations of a fluid shift reversal may be needed to mitigate spaceflight-induced changes and/or other factors are involved.


Assuntos
Disco Óptico , Voo Espacial , Estudos de Coortes , Deslocamentos de Líquidos Corporais/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Retina/diagnóstico por imagem , Voo Espacial/métodos
4.
J Appl Physiol (1985) ; 131(2): 613-620, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166098

RESUMO

Spaceflight-associated neuro-ocular syndrome (SANS) develops during long-duration (>1 mo) spaceflight presumably because of chronic exposure to a headward fluid shift that occurs in weightlessness. We aimed to determine whether reversing this headward fluid shift with acute application of lower body negative pressure (LBNP) can influence outcome measures at the eye. Intraocular pressure (IOP) and subfoveal choroidal thickness were therefore evaluated by tonometry and optical coherence tomography (OCT), respectively, in 14 International Space Station crewmembers before flight in the seated, supine, and 15° head-down tilt (HDT) postures and during spaceflight, without and with application of 25 mmHg LBNP. IOP in the preflight seated posture was 14.4 mmHg (95% CI, 13.5-15.2 mmHg), and spaceflight elevated this value by 1.3 mmHg (95% CI, 0.7-1.8 mmHg, P < 0.001). Acute exposure to LBNP during spaceflight reduced IOP to 14.2 mmHg (95% CI, 13.4-15.0 mmHg), which was equivalent to that of the seated posture (P > 0.99), indicating that venous fluid redistribution by LBNP can influence ocular outcome variables during spaceflight. Choroidal thickness during spaceflight (374 µm, 95% CI, 325-423 µm) increased by 35 µm (95% CI, 25-45 µm, P < 0.001), compared with the preflight seated posture (339 µm, 95% CI, 289-388 µm). Acute use of LBNP during spaceflight did not affect choroidal thickness (381 µm, 95% CI, 331-430 µm, P = 0.99). The finding that transmission of reduced venous pressure by LBNP did not decrease choroidal thickness suggests that engorgement of this tissue during spaceflight may reflect changes that are secondary to the chronic cerebral venous congestion associated with spaceflight.NEW & NOTEWORTHY Spaceflight induces a chronic headward fluid shift that is believed to underlie ocular changes observed in astronauts. The present study demonstrates, for the first time, that reversing this headward fluid shift via application of lower body negative pressure (LBNP) during spaceflight may alter the ocular venous system, as evidenced by a decrease in intraocular pressure. This finding indicates that LBNP has the potential to be an effective countermeasure against the headward fluid shift during spaceflight, which may then be beneficial in preventing or reversing associated ocular changes.


Assuntos
Voo Espacial , Ausência de Peso , Corioide , Humanos , Pressão Intraocular , Pressão Negativa da Região Corporal Inferior , Tonometria Ocular , Ausência de Peso/efeitos adversos
5.
JAMA Ophthalmol ; 139(7): 781-784, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34014272

RESUMO

IMPORTANCE: Long-duration spaceflight induces structural changes in the brain and eye. Identification of an association between cerebral and ocular changes could help determine if there are common or independent causes and inform targeted prevention strategies or treatments. OBJECTIVE: To determine if there is an association between quantitative changes in intracranial compartment volumes and peripapillary total retinal thickness after spaceflight. DESIGN, SETTING, AND PARTICIPANTS: This cohort study included healthy International Space Station crew members before and immediately after long-duration spaceflight. Data on race were not collected. Analysis was conducted from September to November 2020. EXPOSURES: Long-duration spaceflight (mean [SD], 191 [55] days). MAIN OUTCOMES AND MEASURES: Optical coherence tomography-derived peripapillary total retinal thickness as a quantitative assessment and early sign of optic disc edema and magnetic resonance imaging-derived measures of lateral ventricle volume, white matter volume, and whole brain plus cerebrospinal fluid volume. RESULTS: In 19 healthy crew members included in this study (5 women [26.3%], 14 men [73.7%]; mean [SD] age, 45.2 [6.4] years), analyses revealed a positive, although not definitive, association between spaceflight-induced changes in total retinal thickness and lateral ventricle volume (4.7-µm increase in postflight total retinal thickness [95% CI, -1.5 to 10.8 µm; P = .13] per 1-mL postflight increase in lateral ventricle volume). Adjustments for mission duration improved the strength of association (5.1 µm; 95% CI, -0.4 to 10.5 µm; P = .07). No associations were detected between spaceflight-induced changes in total retinal thickness and white matter volume (0.02 µm; 95% CI, -0.5 to 0.5 µm; P = .94) or brain tissue plus cerebrospinal fluid volume, an estimate of intracranial volume (0.02 µm; 95% CI, -0.6 to 0.6 µm; P = .95). CONCLUSIONS AND RELEVANCE: These results help characterize spaceflight-associated neuro-ocular syndrome and the physiologic associations of headward fluid shifts with outcomes during spaceflight on the central nervous system. The possibly weak association between increased total retinal thickness and lateral ventricle volume suggest that while weightlessness-induced fluid redistribution during spaceflight may be a common stressor to the brain and retina, the development of optic disc edema appears to be uncoupled with changes occurring in the intracranial compartment.


Assuntos
Papiledema , Voo Espacial , Astronautas , Encéfalo , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Papiledema/diagnóstico por imagem , Papiledema/etiologia , Retina/diagnóstico por imagem
6.
JAMA Ophthalmol ; 139(6): 663-667, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33914020

RESUMO

IMPORTANCE: While 6-month data are available regarding spaceflight-associated neuro-ocular syndrome, manned missions for 1 year and beyond are planned, warranting evaluation for spaceflight-associated neuro-ocular syndrome beyond 6 months. OBJECTIVE: To determine if the manifestation of spaceflight-associated neuro-ocular syndrome worsens during International Space Station missions exceeding the present 4- to 6-month duration. DESIGN, SETTING, AND PARTICIPANTS: The One-Year Mission Study used quantitative imaging modalities to investigate changes in ocular structure in 2 crew members who completed a 1-year-long spaceflight mission. This study investigated the ocular structure of crew members before, during, and after their mission on the International Space Station. Two crew members participated in this study from March 2015 to September 2016. Analysis began in March 2015 and ended in May 2020. EXPOSURES: Crew members were tested before, during, and up to 1 year after spaceflight. MAIN OUTCOMES AND MEASURES: This study compares ocular changes (peripapillary retinal edema, axial length, anterior chamber depth, and refraction) in two 1-year spaceflight mission crew members with cohort crew members from a 6-month mission (n = 11). Minimum rim width (the shortest distance between Bruch membrane opening and the internal limiting membrane) and peripapillary total retinal thickness were measured using optical coherence tomography. RESULTS: Both crew members were men. Minimum rim width and total retinal thickness increased in both participants throughout the duration of spaceflight exposure to the maximal observed change from preflight (minimum rim width: participant 1, 561 [+149 from preflight] µm at flight day 270; participant 2, 539 [+56 from preflight] µm at flight day 270; total retinal thickness: participant 1, 547 [+135 from preflight] µm at flight day 90; participant 2, 528 [+45 from preflight] µm at flight day 210). Changes in peripapillary choroid engorgement, axial length, and anterior chamber depth appeared similar between the 1-year mission participants and a 6-month mission cohort. CONCLUSIONS AND RELEVANCE: This report documents the late development of mild optic disc edema in 1 crew member and the progressive development of choroidal folds and optic disc edema in another crew member over the duration of 1 year in low Earth orbit aboard the International Space Station. Previous reports characterized the ocular risk associated with 4 to 6 months of spaceflight. As future spaceflight missions are planned to increase in duration and extend beyond low Earth orbit, further observation of astronaut ocular health on spaceflight missions longer than 6 months in duration may be warranted.


Assuntos
Disco Óptico , Papiledema , Voo Espacial , Astronautas , Corioide , Feminino , Humanos , Masculino , Papiledema/diagnóstico , Papiledema/etiologia , Voo Espacial/métodos
7.
JAMA Netw Open ; 2(11): e1915011, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722025

RESUMO

Importance: Exposure to a weightless environment during spaceflight results in a chronic headward blood and tissue fluid shift compared with the upright posture on Earth, with unknown consequences to cerebral venous outflow. Objectives: To assess internal jugular vein (IJV) flow and morphology during spaceflight and to investigate if lower body negative pressure is associated with reversing the headward fluid shift experienced during spaceflight. Design, Setting, and Participants: This prospective cohort study included 11 International Space Station crew members participating in long-duration spaceflight missions . Internal jugular vein measurements from before launch and approximately 40 days after landing were acquired in 3 positions: seated, supine, and 15° head-down tilt. In-flight IJV measurements were acquired at approximately 50 days and 150 days into spaceflight during normal spaceflight conditions as well as during use of lower body negative pressure. Data were analyzed in June 2019. Exposures: Posture changes on Earth, spaceflight, and lower body negative pressure. Main Outcomes and Measures: Ultrasonographic assessments of IJV cross-sectional area, pressure, blood flow, and thrombus formation. Results: The 11 healthy crew members included in the study (mean [SD] age, 46.9 [6.3] years, 9 [82%] men) spent a mean (SD) of 210 (76) days in space. Mean IJV area increased from 9.8 (95% CI, -1.2 to 20.7) mm2 in the preflight seated position to 70.3 (95% CI, 59.3-81.2) mm2 during spaceflight (P < .001). Mean IJV pressure increased from the preflight seated position measurement of 5.1 (95% CI, 2.5-7.8) mm Hg to 21.1 (95% CI, 18.5-23.7) mm Hg during spaceflight (P < .001). Furthermore, stagnant or reverse flow in the IJV was observed in 6 crew members (55%) on approximate flight day 50. Notably, 1 crew member was found to have an occlusive IJV thrombus, and a potential partial IJV thrombus was identified in another crew member retrospectively. Lower body negative pressure was associated with improved blood flow in 10 of 17 sessions (59%) during spaceflight. Conclusions and Relevance: This cohort study found stagnant and retrograde blood flow associated with spaceflight in the IJVs of astronauts and IJV thrombosis in at least 1 astronaut, a newly discovered risk associated with spaceflight. Lower body negative pressure may be a promising countermeasure to enhance venous blood flow in the upper body during spaceflight.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Veias Jugulares/fisiologia , Trombose/diagnóstico por imagem , Ausência de Peso/efeitos adversos , Adulto , Medicina Aeroespacial/métodos , Astronautas/estatística & dados numéricos , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Voo Espacial/métodos , Voo Espacial/tendências , Trombose/prevenção & controle , Ultrassonografia/métodos
9.
Aerosp Med Hum Perform ; 89(1): 32-40, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29233242

RESUMO

BACKGROUND: Back pain is a common complaint during spaceflight that is commonly attributed to intervertebral disc swelling in microgravity. Ultrasound (US) represents the only imaging modality on the International Space Station (ISS) to assess its etiology. The present study investigated: 1) The agreement and correlation of spinal US assessments as compared to results of pre- and postflight MRI studies; and 2) the trend in intervertebral disc characteristics over the course of spaceflight to ISS. METHODS: Seven ISS astronauts underwent pre- and postflight US examinations that included anterior disc height and anterior intervertebral angles with comparison to pre- and postflight MRI results. In-flight US images were analyzed for changes in disc height and angle. Statistical analysis included repeated measures ANOVA with Bonferroni post hoc analysis, Bland-Altman plots, and Pearson correlation. RESULTS: Bland-Altman plots revealed significant disagreement between disc heights and angles for MRI and US measurements while significant Pearson correlations were found in MRI and US measurements for lumbar disc height (r2 = 0.83) and angle (r2 = 0.89), but not for cervical disc height (r2 = 0.26) or angle (r2 = 0.02). Changes in anterior intervertebral disc angle-initially increases followed by decreases-were observed in the lumbar and cervical spine over the course of the long-duration mission. The cervical spine demonstrated a loss of total disc height during in-flight assessments (∼0.5 cm). DISCUSSION: Significant disagreement but significant correlation was noted between US and MRI measurements of disc height and angle. Consistency in imaging modality is important for trending measurements and more research related to US technique is required.Harrison MF, Garcia KM, Sargsyan AE, Ebert D, Riascos-Castaneda RF, Dulchavsky SA. Preflight, in-flight, and postflight imaging of the cervical and lumbar spine in astronauts. Aerosp Med Hum Perform. 2018; 89(1):32-40.


Assuntos
Medicina Aeroespacial , Dor nas Costas/diagnóstico por imagem , Vértebras Cervicais/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Voo Espacial , Adulto , Astronautas , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Ultrassonografia
10.
J Ultrasound Med ; 37(4): 987-999, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28960477

RESUMO

OBJECTIVES: Back pain is one of the most common conditions of astronauts during spaceflight and is hypothesized to be attributed to pathologic anatomic changes. Ultrasound (US) represents the only available imaging modality on the International Space Station, but a formal US protocol for imaging the structures of the spinal column does not exist. This investigation developed a method of acquiring diagnostic-quality images of the anterior lumbar and cervical regions of the spine during long-duration spaceflight. METHODS: Comprehensive spinal US examinations were conducted on 7 long-duration spaceflight astronauts before flight, in flight, and after flight and compared to preflight and postflight magnetic resonance imaging data. In-flight scans were conducted after just-in-time training assisted by remote expert tele-US guidance. RESULTS: Novice users were able to obtain diagnostic-quality spinal images with a 92.5% success rate. Thirty-three anomalous or pathologic findings were identified during the preflight US analysis, and at least 14 new findings or progressions were identified during the postflight US analysis. Common findings included disk desiccation, osteophytes, and qualitative changes in the intervertebral disk height and angle. CONCLUSIONS: Ultrasound has proven efficacy as a portable and versatile diagnostic imaging modality under austere conditions. We demonstrated a potential role for US to evaluate spinal integrity and alterations in the extreme environment of space on the International Space Station. Further investigations should be performed to corroborate this imaging technique and to create a larger database related to in-flight spinal conditions during long-duration spaceflight.


Assuntos
Astronautas , Voo Espacial , Doenças da Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/anatomia & histologia , Coluna Vertebral/diagnóstico por imagem , Ultrassonografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
11.
World J Surg ; 40(4): 863-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26566780

RESUMO

INTRODUCTION: The impact of diabetes mellitus (DM) on outcomes in patients undergoing emergency laparotomy for adhesive small bowel obstruction (ASBO) remains unknown. METHODS: Low-risk (ASA class of I and II) patients requiring emergency operation for ASBO were identified using the ACS NSQIP database. Propensity score matching was used to match patients with DM to those without DM in a ratio of 1:3. Mortality, infectious complications, acute renal failure (ARF), and myocardial infarction (MI) were compared between the two groups. The impact of delaying OR ≥ 24 h was also analyzed in the two groups. RESULTS: A total of 1,608 patients were matched, 402 with DM and 1,204 without DM. Overall, patients with DM were significantly more likely to develop infections, ARF and MI. Diabetes had no negative impact on outcomes if the operation was performed within 24 h of admission. However, delaying surgery >24, significantly increased infections, ARF and MI. CONCLUSIONS: DM in low-risk patients has no negative impact on outcomes in patients undergoing surgery for ASBO within 24 h. However, delaying surgery >24 h resulted in worse outcomes.


Assuntos
Diabetes Mellitus/epidemiologia , Obstrução Intestinal/cirurgia , Intestino Delgado/cirurgia , Complicações Pós-Operatórias/epidemiologia , Tempo para o Tratamento/estatística & dados numéricos , Aderências Teciduais/cirurgia , Injúria Renal Aguda/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Comorbidade , Bases de Dados Factuais , Emergências , Feminino , Hospitalização , Humanos , Obstrução Intestinal/epidemiologia , Obstrução Intestinal/etiologia , Laparotomia , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Mortalidade , Infarto do Miocárdio/epidemiologia , Pneumonia/epidemiologia , Pontuação de Propensão , Estudos Retrospectivos , Deiscência da Ferida Operatória/epidemiologia , Infecção da Ferida Cirúrgica/epidemiologia , Aderências Teciduais/complicações , Aderências Teciduais/epidemiologia , Resultado do Tratamento
12.
Aerosp Med Hum Perform ; 86(12): 1034-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26630050

RESUMO

BACKGROUND: Remote-guidance (RG) techniques aboard the International Space Station (ISS) have enabled astronauts to collect diagnostic-level ultrasound (US) images. Exploration-class missions will likely require nonformally trained sonographers to operate with greater autonomy given longer communication delays (> 6 s for missions beyond the Moon) and blackouts. Training requirements for autonomous collection of US images by non-US experts are being determined. METHODS: Novice US operators were randomly assigned to one of three groups to collect standardized US images while drawing expertise from A) RG only, B) a computer training tool only, or C) both RG and a computer training tool. Images were assessed for quality and examination duration. All operators were given a 10-min standardized generic training session in US scanning. The imaging task included: 1) bone fracture assessment in a phantom and 2) Focused Assessment with Sonography in Trauma (FAST) examination in a healthy volunteer. A human factors questionnaire was also completed. RESULTS: Mean time for group B during FAST was shorter (20.4 vs. 22.7 min) than time for the other groups. Image quality scoring was lower than in groups A or C, but all groups produced images of acceptable diagnostic quality. DISCUSSION: RG produces US images of higher quality than those produced with only computer-based instruction. Extended communication delays in exploration missions will eliminate the option of real-time guidance, thus requiring autonomous operation. The computer program used appears effective and could be a model for future digital US expertise banks. Terrestrially, it also provides adequate self-training and mentoring mechanisms.


Assuntos
Medicina Aeroespacial/métodos , Instrução por Computador/métodos , Fraturas Ósseas/diagnóstico por imagem , Voo Espacial , Telemedicina/métodos , Ultrassonografia/normas , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Ultrassonografia/instrumentação , Ferimentos e Lesões/diagnóstico por imagem
13.
J Ultrasound ; 18(2): 179-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26191106

RESUMO

BACKGROUND: Point of care ultrasound (POCUS) is a useful diagnostic tool in medicine. POCUS provides an easy and reproducible method of diagnosis where conventional radiologic studies are unavailable. Telemedicine is also a great means of communication between educators and students throughout the world. HYPOTHESIS: Implementing POCUS with didactics and hands-on training, using portable ultrasound devices followed by telecommunication training, will impact the differential diagnosis and patient management in a rural community outside the United States. MATERIALS AND METHODS: This is an observational prospective study implementing POCUS in Las Salinas, a small village in rural western Nicaragua. Ultrasound was used to confirm a diagnosis based on clinical exam, or uncover a new, previously unknown diagnosis. The primary endpoint was a change in patient management. International sonographic instructors conducted didactic and practical training of local practitioners in POCUS, subsequently followed by remote guidance and telecommunication for 3 months. RESULTS: A total of 132 patients underwent ultrasound examination. The most common presentation was for a prenatal exam (23.5 %), followed by abdominal pain (17 %). Of the 132 patients, 69 (52 %) were found to have a new diagnosis. Excluding pregnancy, 67 patients of 101 (66 %) were found to have a new diagnosis. A change in management occurred in a total of 64 (48 %) patients, and 62 (61 %) after excluding pregnancy. CONCLUSION: Implementing POCUS in rural Nicaragua led to a change in management in about half of the patients examined. With the appropriate training of clinicians, POCUS combined with telemedicine can positively impact patient care.

14.
Front Public Health ; 2: 106, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25140296

RESUMO

Chronic diseases are prevalent in ethnic communities. Churches represent a potent resource for targeted health promotion. A faith-based kiosk was developed as an informational tool and placed in four predominantly (>80%) African-American churches. Congregants were surveyed to describe kiosk-use, kiosk-user characteristics, health status, and self-reported behavior changes attributed to the kiosk. We analyzed 1,573 questionnaires. Mean age of respondents was 46.4 years and >70% were women. "Older" congregations (mean age ≥46.1 years) had more reports of diabetes (p = 0.002) and heart diseases (p = 0.01) than younger churches (mean age ≤44.1), whereas asthma was more prevalent in the latter (p < 0.001). Prevalence of obesity (40%) was similar across churches (p = 0.570). Kiosk-use was reported by 420 (26.7%) respondents. Compared to non-users, kiosk-users were >40 years (p < 0.001), and reported >two health conditions, adjusted Odds Ratio (95% Confidence Interval) = 1.43 (1.0-2.0), p = 0.05. Male kiosk-users preferred to select disease-specific content, aOR = 1.87 (1.10-3.17), p = 0.02, while females tended to select information about supportive community resources, aOR = 0.49 (0.23-1.04), p = 0.062. Knowledge of kiosk-user characteristics and the "health status" of a congregation, provide an opportunity for targeted, church-based health promotion.

15.
Aviat Space Environ Med ; 85(1): 3-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24479252

RESUMO

BACKGROUND: Ocular changes have been noted during long-duration spaceflight; we studied central retinal artery (CRA) blood flow using Doppler before, during, and after long-term microgravity exposure in astronauts compared with data from a control group of nonastronauts subjected to head-down tilt (HDT). METHODS: Available Doppler spectra of International Space Station (ISS) crewmembers were obtained from the NASA Lifetime Surveillance of Astronaut Health database, along with 2D ultrasound-derived measurements of the optic nerve sheath diameter (ONSD). CRA Doppler spectra and optic nerve sheath images were also obtained from healthy test subjects in an acute HDT experiment at 20 min of exposure (the ground-based analogue). RESULTS: HDT CRA peak systolic velocity in the ground-based analogue group increased by an average of 3 cm -s(-1) (33%) relative to seated values. ONSD at 300 of HDT increased by 0.5 mm relative to supine values. CRA Doppler spectra obtained on orbit were of excellent quality and demonstrated in-flight changes of +5 cm x s(-1) (50%) compared to preflight. ONSD increased in ISS crewmembers during flight relative to before flight, with some reversal postflight. DISCUSSION: A significant ONSD response to acute postural change and to spaceflight was demonstrated in this preliminary study. Increases in Doppler peak flow velocities correlated with increases in ONSD. Further investigations are warranted to corroborate the relationship between ONSD, intracranial pressure, and central retinal blood flow for occupational surveillance and research purposes.


Assuntos
Artéria Retiniana/diagnóstico por imagem , Ultrassonografia Doppler , Ausência de Peso , Astronautas , Velocidade do Fluxo Sanguíneo , Humanos , Artéria Retiniana/fisiologia
16.
J Clin Ultrasound ; 42(5): 257-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24449415

RESUMO

PURPOSE: To investigate whether providing sonographic (US)/MRI fusion images will enhance the ability of medical students and radiology residents to identify MSK anatomy on sonograms alone. METHODS: Medical students (n = 31) and radiology residents (n = 23) were each randomly divided into two groups: Group A and Group B. Subjects in Group A were shown 10 MSK sonograms with arrows pointing to a specific anatomic structure or anatomic region. Subjects in Group B were shown the exact same 10 annotated sonograms as Group A as well as an additional fusion image consisting of an MRI of the same anatomy in the same plane fused with the sonogram without arrows. Sonograms and MRI were obtained from adult patients who consented to have their images used. The anatomic regions included the shoulder, hip, and pelvis. Both groups were given the same 10-question multiple choice examination to identify the anatomic structure that the arrow was marking on the sonogram. The transducer's location was given for every question. One minute was allowed to answer each question. The Wilcoxon rank sum test was used to assess if there was a difference between Group A and Group B in both the medical student and the radiology resident cohorts. RESULTS: Medical students: subjects in Group A (n = 16) gave the correct answers in 33.8% of the cases (54/160). Subjects in Group B (n = 15) gave correct answers in 26.0% of the cases (39/150) (p value <0.110). Radiology residents: subjects in Group A (n = 11) gave correct answers in 40.9% of the cases (45/110). Subjects in Group B (n = 12) gave correct answers in 72.5% of the cases (87/120) (p value <0.001). CONCLUSION: The addition of a fusion MRI/US image enhances radiology residents' ability to identify MSK US anatomy accurately compared with the sonogram alone. The medical students, however, did not show improvement with the addition of the fusion MRI/sonogram. 2014.


Assuntos
Competência Clínica/estatística & dados numéricos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Radiologia/educação , Ultrassonografia/métodos , Avaliação Educacional/métodos , Avaliação Educacional/estatística & dados numéricos , Humanos , Internato e Residência/métodos , Sistema Musculoesquelético/anatomia & histologia , Sistema Musculoesquelético/diagnóstico por imagem , Estatísticas não Paramétricas , Estudantes de Medicina/estatística & dados numéricos , Estados Unidos
17.
J Emerg Med ; 46(1): 61-70, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24135505

RESUMO

BACKGROUND: Changes in the lumbar and sacral spine occur with exposure to microgravity in astronauts; monitoring these alterations without radiographic capabilities on the International Space Station (ISS) requires novel diagnostic solutions to be developed. STUDY OBJECTIVES: We evaluated the ability of point-of-care ultrasound, performed by nonexpert-operator astronauts, to provide accurate anatomic information about the spine in long-duration crewmembers in space. METHODS: Astronauts received brief ultrasound instruction on the ground and performed in-flight cervical and lumbosacral ultrasound examinations using just-in-time training and remote expert tele-ultrasound guidance. Ultrasound examinations on the ISS used a portable ultrasound device with real-time communication/guidance with ground experts in Mission Control. RESULTS: The crewmembers were able to obtain diagnostic-quality examinations of the cervical and lumbar spine that would provide essential information about acute or chronic changes to the spine. CONCLUSIONS: Spinal ultrasound provides essential anatomic information in the cervical and lumbosacral spine; this technique may be extensible to point-of-care situations in emergency departments or resource-challenged areas without direct access to additional radiologic capabilities.


Assuntos
Vértebras Cervicais/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Sistemas Automatizados de Assistência Junto ao Leito , Sacro/diagnóstico por imagem , Voo Espacial , Ausência de Peso/efeitos adversos , Educação não Profissionalizante , Humanos , Masculino , Pessoa de Meia-Idade , Consulta Remota , Ultrassonografia/métodos
19.
Telemed J E Health ; 19(7): 530-4, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23682590

RESUMO

Modern medical practice has become extremely dependent upon diagnostic imaging technologies to confirm the results of clinical examination and to guide the response to therapies. Of the various diagnostic imaging techniques, ultrasound is the most portable modality and one that is repeatable, dynamic, relatively cheap, and safe as long as the imaging provided is accurately interpreted. It is, however, the most user-dependent, a characteristic that has prompted the development of remote guidance techniques, wherein remote experts guide distant users through the use of information technologies. Medical mission work often brings specialist physicians to less developed locations, where they wish to provide the highest levels of care but are often bereft of diagnostic imaging resources on which they depend. Furthermore, if these personnel become ill or injured, their own care received may not be to the standard they have left at home. We herein report the utilization of a compact hand-carried remote tele-ultrasound system that allowed real-time diagnosis and follow-up of an acutely torn adductor muscle by a team of ultrasonographers, surgeons, and physicians. The patient was one of the mission surgeons who was guided to self-image. The virtual network of supporting experts was located across North America, whereas the patient was in Lome, Togo, West Africa. The system consisted of a hand-carried ultrasound, the output of which was digitized and streamed to the experts within standard voice-over-Internet-protocol software with an embedded simultaneous videocamera image of the ultrasonographer's hands using a customized graphical user interface. The practical concept of a virtual tele-ultrasound support network was illustrated through the clinical guidance of multiple physicians, including National Aeronautics and Space Administration Medical Operations remote guiders, Olympic team-associated surgeons, and ultrasound-focused emergentologists.


Assuntos
Doenças Musculoesqueléticas/diagnóstico por imagem , Sistemas Automatizados de Assistência Junto ao Leito , Missões Religiosas , Consulta Remota/instrumentação , Telemedicina/instrumentação , Hóquei/lesões , Humanos , Masculino , Pessoa de Meia-Idade , Togo , Ultrassonografia/instrumentação , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...